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Abstract. Thomas–Fermi- (TF-) type theories are applied to the problem of static dielectric
screening in a semiconductor at absolute zero when the impurity-charge-density distribution is
given by a variational statistical approximation. This treatment of the external perturbation is
consistent with the valence electron-gas formulation of the host crystal and in contrast with
the point-charge probe and other donor-specific or pseudocharge distributions that have been
previously studied in this context. One-parameter exponential bound-electron charge densities
are employed in this report. For purposes of illustration, atomic parameters specifying the
chemical identity of an impurity are characteristic of phosphorus (group V) and sulphur (group
VI) substitutional single and double donors, respectively, and a reference silicon ion. Linearized
TF and Thomas–Fermi–Dirac (TFD) screening equations for the exponential case and its point-
charge limit are solved in closed analytical form with silicon as the host semiconductor. The
corresponding nonlinear TF and TFD equations are solved numerically and nonlinear screened
impurity potentials are compared with linear results. Dielectric screening of statistical impurities
follows the same general trend as noted for a point charge, that is, the nonlinear theory is more
effective than its linear approximation. Furthermore, for a given statistical impurity, with a given
degree of ionization, the ion potential is more effectively screened in the following order: linear
TF, linear TFD, nonlinear TF, and nonlinear TFD. Corresponding screening radii decrease in this
order. Within the set of statistical ions under consideration, linear and corresponding nonlinear
screening radii and their differences decrease as the degree of ionization decreases. Further
development is planned to test the usefulness of this approach to donor and host potentials in
conventional and generalized effective-mass calculations of isocoric and nonisocoric binding
energies.

1. Introduction

The electronic structure and properties of ionized impurities in semiconductors is a subject
of considerable theoretical and experimental interest [1]. The study of binding energies
involves the construction of individual impurity potentials which can be used directly with
various methods of solution, including effective-mass variational procedures, numerical
integration of Schr̈odinger’s equation, and Green function techniques. The valence electrons
in a semiconductor will respond to the presence of an ionized atom by screening its bare
potential. It is well known [1, 2] that an accurate description of the screening effect is
indispensible for the calculation of the ground states of donors in semiconductors. From the
viewpoint of wave-vector space (k-space), the screened impurity potential is given by the
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Fourier transform of the bare potential divided by ak-space-dependent dielectric function
which is obtained from linear response theory. Accurate dielectric functions are worked out
numerically and the results fitted to an analytic expression. Integrating back to configuration
space (r-space) to obtain the screened impurity potential is very complicated, if not in some
cases impractical.

A more transparent approach to the problem of dielectric screening involves the TF
method which has the advantage of working directly inr-space and readily adapts to
a nonlinear treatment [3]. This popular description of the microscopic response of a
semiconductor to an external perturbation treats the valence electrons as a degenerate
Fermi gas of nonuniform, spherically symmetric densityn(r) in a positive background.
Semiconductor-like behaviour is simulated in this model homogeneous and isotropic metallic
medium by thead hoc prescription of a finite radiusR of incomplete screening at and
beyond which the electron density assumes its uniform background valuen. The available
screening charge−(1 − 1/ε)Za is wholly contained within a spherical boundary of radius
R whereZa is the external charge andε is the static macroscopic dielectric constant of
the semiconductor [4]. The original formulation of this particular screening theory adopts
a point-charge probe,Zaδ(r), for which it is possible to define a spatial dielectric function,
ε̄(r), as the ratio of the bare Coulomb potential,−Za/r, to the screened potential,V (r).
Characteristically,̄ε(r) increases monotonically from unity at the origin toε for r > R. The
corresponding linear and nonlinear TF screening equations have been solved analytically
[3] and numerically [5], respectively, subject to continuity requirements on the potential and
the electric field atr = R, and the condition at the origin generally applied to a Coulomb
divergence. Semiconductor input data consist ofε and the valence Fermi momentum,
kF . Basic features of this theory are the following: (i) the screening radius is of the
order of a single bond length in covalent solids; (ii) the TF linear response functions are
numerically quite close to the pseudopotential random-phase-approximation calculations of
the same functions; (iii) nonlinear response functions manifest important deviations from
the results of linear theory. In particular, screening radii are correspondingly smaller (larger)
in the former case, implying that attractive (repulsive) potentials are screened more (less)
effectively.

Modifications of the TF theory include exchange–correlation in the Dirac–SlaterXα

approximation [6] and a Weizsäcker-type gradient correction to the kinetic energy functional
[7]. In the former case, an exchange–correlation potential of a shallow-donor impurity
and the exchange interaction of the donor electron with the valence electrons are used in
an effective-mass variational calculation of the binding energy. The same problem has
been investigated in terms of a numerical integration of Schrödinger’s equation whereby
best results for the binding energy in silicon and germanium are obtained with nonlinear
screening in the TFD approximation [8]. A natural generalization of the present screening
theory considers the dielectric relaxation of a doped semiconductor at nonzero temperature
[9]. Under these conditions, the Fourier transform of the screened potential is reduced to an
effective wave-vector-dependent dielectric function which combines the zero-temperature
response due to the valence electrons with a temperature-dependent part due to the free
carriers. In effect, this amounts to a summation of the susceptibilities due to these various
sources of charge. This extension of the theory has been applied to the problem of calculating
the ionized-impurity scattering mobility in silicon [10].

Self-consistent TF-type approximations require the screened potentials to satisfy
Poisson’s equation. The displacement of the inhomogeneous electron densityn(r) from
the uniform background densityn provides a source term in this equation. Another
contribution is due to the presence of the external charge density which, in its simplest
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form, is a point charge. More realistic screening situations, such as arise for donors in
multivalley semiconductors such as silicon, require the introduction of an impurity with
a spatially extended charge or pseudocharge distribution. A linearized version of the TF
theory incorporates donor-specific, bare-impurity pseudopotentials [11]; some consequences
of linearization are examined in a nonlinear treatment using the same pseudopotentials [12].
Another application of the theory, including a boundary condition on the electric field at the
origin, studies three different model potentials and their corresponding pseudocharges [13].
It is pointed out in the second citation under [13] that the continuity conditions, applied at
the screening radius when all of the external charge resides within the screening boundary,
will not be strictly correct with the use of smooth pseudocharges that are nonvanishing
beyondR. In that case, the screened potential forr > R is the sum of the bare potential
and the term(1 − 1/ε)Za/r due to the screening charge, rather than simply the former
reduced byε.

The model proposed in [3] for screening in semiconductors starts from an electron-gas
formulation of the host crystal. On the other hand, the impurity charge or pseudocharge
distributions employed thus far in the literature are prescribed in some other way. The
purpose of the present paper is to follow a theoretical approach in which the bound electrons
associated with the impurity are treated in a statistical variational approximation. Similar
considerations have been applied to the problem of stopping power and straggling of ionic
projectiles in condensed matter [14]. The size parameter of the fixed electron cloud in the
ion and the internal energy of the ion are determined by a minimization of the total ground-
state energy functional with respect to the total number of electrons and the size parameter.
An obvious advantage of this approach is that it permits the use ofa priori charge densities
that possess some of the essential features of real atoms, such as being finite at the nucleus
and monotonically decreasing. Exponential impurity-charge densities will be employed in
this paper to describe the electrons bound in the bare atom or ion.

Section 2 is concerned with statistical models of the external charge distribution.
The corresponding energy functional accounts for the classical Coulomb potential energy
of electron–electron and electron–nucleus interactions and the kinetic energy in the TF
approximation. The electron–electron interaction is weighted for correlation in an average
manner by a parameterβ. Optimization of the total ground-state energy, with respect to the
size parameterα associated with the prescribed donor charge density, leads to an expression
for this parameter in terms of the total number of bound electronsNa, the nuclear charge
Z, and the correlation parameter. Another expression forα is obtained from the definition
of the chemical potential for a neutral atom. These results determine a numerical value
for β which feeds into final expressions for the internal energy andα. A comparison is
made between experimental total ground-state energies for free ions and neutral atoms and
results predicted by numerical solution of the customary TF equation, statistical models,
and Hartree–Fock theory.

Section 3 deals with TF-type dielectric screening of statistical atoms or ions in the model
semiconductor. Minimization of the corresponding total ground-state energy functional with
respect to the electron number density,n(r), subject to the constraint that the total number
of valence electrons remains constant, yields an Euler–Lagrange equation which must be
solved self-consistently with Poisson’s equation for the screened potential,V (r). It is seen
that V (r) is the sum of the dopant-dependent bare impurity potential and the potential due
to the induced electron-charge density. Linear and nonlinear TF-type screening equations
are formulated in this section. A closed analytical expression is derived forV (r) in the
former approximation. It reduces to the dielectric screening of a point charge and the
metallic screening of an extended charge density in the formal limitsα → 0 andR → ∞,
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respectively. Taken together, these limits recover the well known result of Mott for the TF
metallic screening of a point charge.

Numerical solutions of the nonlinear screening equations are presented in section 4. This
section includes a comparison between linear and nonlinear results for statistical models
of phosphorus, sulphur, and a reference silicon ion in a model semiconductor of silicon.
Screened potentials and corresponding screening radii for these ions and their point-charge
limits are displayed in graphical and tabular form, respectively. The two sets of solutions
(linear and nonlinear TF and TFD) are compared by illustrating the relationship between the
screening radius and the degree of ionization for phosphorus in silicon. Lastly, a sequence
of nonlinear TFD screened potentials, with the degree of ionization as parameter, are shown
for phosphorus in silicon. Section 5 gives some concluding remarks.

2. Atoms or ions in the variational statistical approximation

2.1. Bound-electron charge density and total ground-state energy

The three basic components of the ground-state energy functional of a many-electron system
are its kinetic energy, the electron–electron repulsive energy, and the attractive electron–
nuclear energy. The second contribution can be expressed as the sum of the classical
Coulomb repulsive energy and the exchange–correlation energy. This section adopts a
simplified version of this energy functional for statistical models of donor atom or ions
embedded in a medium with macroscopic dielectric constantε. The kinetic energy density
is considered to be proportional to the five-thirds power of the bound-electron densityρc(r)

as in the original TF theory. The electron–electron interaction is weighted for correlation
in an average manner as in [14], and the exchange–correlation part is formally neglected.
Under these conditions, the total ground-state energy is

Ea = ck

∫
ρ5/3

e (r)dτ + 1

ε

∫
ρe(r)vn(r)dτ + 1

2ε
β

∫
ρe(r)ve(r)dτ. (1)

The coefficientck is an abbreviation for (3/10)(3π2)2/3. If v(r) denotes the total potential
energy of the atom or ion, then

v(r) = ve(r) + vn(r) (2a)

where

vn(r) = −Z/r (2b)

and

ve(r) =
∫

ρe(r
′)dτ ′

|r − r′| . (2c)

Similarly, if ρa(r) denotes the total impurity charge density, then

ρa(r) = Zδ(r) − ρe(r). (3)

Integration of this quantity over all space gives

Za =
∫

ρa(r)dτ = Z

(
1 − Na

Z

)
≡ Zp (4)

wherep is defined as the degree of ionization.
Two simple one-parameter forms ofρe(r) are studied here in connection with the

minimization ofEa. Obvious choices are the exponential and screened-Coulomb functions.
[15] shows that the former is especially appropriate because Hartree–Fock electron densities
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and presumably exact densities for the ground states of selected atoms are well represented
by continuous piecewise exponential decaying functions ofr with as many different
exponential regions as there are principal quantum numbers. Results in [15] for ground-
state energies and electron densities of first-row and some second-row atoms show that shell
structure is accessible through simple energy functionals. For the present discussion, it is
convenient to assume thatρe(r) is described by a single exponential distribution

ρe(r) = Na

8πα3
e−r/α (5)

where the screening length or size parameterα is treated as a variational parameter.
Alternatively, various estimations of the electronic stopping power and straggling of the
free electron-gas model solid for a projectile atom have employed the screened Coulomb
form

ρe(r) = Na

4πα2

e−r/α

r
. (6)

For the purpose of calculatingα in a statistical way, the projectile has been treated as an
isolated neutral atom located in a vacuum [14]. Other considerations [16] have used an
improved value ofα in a metallic-like medium by taking into account the screening of
correspondingva(r) andve(r), by the background electron gas. In either case, this form of
ρe(r) permits analysis ofα without recourse to numerical methods, as does (5).

After calculation with (1)–(5), it is found that

Ea = b
N

5/3
a

α2
− NaZ

2αε
+ 5βN2

a

32αε
(7)

whereb is an abbreviation for 2(3π)2/3(3/10)4. It remains to minimizeEa with respect to
Na (= Z) andα. As a result of these operations, the first of which expresses the vanishing
of the chemical potential for a neutral atom, it follows that

Ea(Z, p) = −Z7/3(1 − p)1/3(6 + p)2/784bε2 (8)

α(Z, p) = 28bε(1 − p)2/3/Z1/3(6 + p) (9)

andβ = 48/105. The correlation parameter is less than unity, as it should be. From (5),
(8) and (9), the ground-state energy and the bound-electron charge density are determined
now in terms of the parametersZ, p andε. A parallel calculation ofβ, Ea andα in terms
of the screened Coulomb form ofρe(r) given by (6) shows thatβ = 4/7, while the only
changes in (8) and (9) are the replacement of the numerical quantities 784b and 28b by 196c
and 14c, respectively, wherec is an abbreviation for(1/2)(3π/4)2/3(3/5)7/30(4/3). Not
surprisingly, it is found in general (p 6= 1) that the exponential density distribution leads
to atomic energies (screening lengths) that are less negative (smaller) than their screened
Coulomb counterparts. It is interesting to make a numerical comparison of these results for
the atomic energy with the prediction of the TF model for neutral atoms (p = 0) in free
space. The following formulae summarize these various cases:

Ea(Z, 0) = −0.6353Z7/3 (10a)

ESC(Z, 0) = −0.7653Z7/3 (10b)

ET F (Z, 0) = −0.76877/3. (10c)

The energiesESC(Z, 0) andET F (Z, 0) are essentially coincident. Table 1 gives the degree
of ionization and atomic screening length for the modified TF model of atoms and ions
in silicon. From table 2, it is seen that the total ground-state energies for free (ε = 1),
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neutral (p = 0) atoms of Si, P and S, derived from the exponential form of the bound-
electron density distribution, are a considerable improvement over those predicted by the
numerical solution of the TF equation and the screened Coulomb distribution. This trend
can be shown as well for other atoms, such as the inert gas group which is frequently used
in comparison testing [15, 17] with Hartree–Fock results as standard. For values ofZ up to
about 20, the known experimental total binding energies are closely reproduced by Hartree–
Fock theory. Of course, such comparisons will be misled by relativistic influences which
are more important for largerZ. It is amusing that the simple expression given above for
Ea(Z, 0) yields energies in respectable agreement with corresponding Hartree–Fock values
given by C F Fischer. The results of tables 2 and 3 show that total ground-state energies
for the free atoms and ions under consideration are good to about 3.6%.

Table 1. Degree of ionizationp and atomic screening lengthα(Z, p) for model atoms and ions
in silicon.

Ion p α(Z, p)a

S6+ 0.375 1.100
P5+ 0.333 1.181
Si4+ 0.286 1.275
S 0 1.598
P 0 1.633
Si 0 1.671

a α(Z, p) is calculated from (9).

Table 2. Ground-state energies (au) for free neutral atoms from modified and original TF model,
Hartree–Fock theory and experiment.

Ea
T F Ec

a Ed
HF

Atom (% of error)b (% of error)b (% of error)b Ee
exp

Si −363.12 −300.11 −288.85 −289.86
(−25.3) (−3.54) (+0.35)

P −426.55 −352.53 −340.72 −342.31
(−24.6) (−2.99) (+0.46)

S −495.87 −409.82 −397.50 −399.03
(−24.3) (−2.70) (+0.38)

a ET F is calculated from (10c).
b Errors are relative to experimental energies,Eexp .
c Ea is calculated from (10a).
d Hartree–Fock energies are from Froese-Fischer CThe Hartree–Fock Method for Atoms(New
York: Wiley).
e Eexp is found from ionization potentials given by Moore C EAnalysis of Optical Spectra
NSRDS-NBS 34 (Washington, DC: National Bureau of Standards).

Finally, some remarks are appropriate concerning other formulations of the ground-
state energy functional. It is noted that values ofEa, even less accurate than the TF
values, are obtained with the present procedure when the correlation part of the electron–
electron interaction if formally neglected, while the exchange part is given in the Dirac
approximation. On the other hand, small reductions in the values ofEa are obtained when
the kinetic energy functional is extended to include the first gradient correction as some
fraction of the original Weizs̈acker term. More sophisticated TF-type energy functionals
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Table 3. Ground-state energies (au) for free ions from modified TF model.

Ea
a(Z, p)

Ion (% of error) Eb
exp

Si4+ −294.44 −286.07
(−2.92)

P5+ −343.19 −335.81
(−2.20)

S6+ −395.61 −388.87
(−1.73)

a Ea(Z, p) is calculated from (8).
b Eexp is found from ionization potentials given by Moore C EAnalysis of Optical Spectra
NSRDS-NBS 34 (Washington, DC: National Bureau of Standards).

with higher-order gradient corrections to the kinetic energy and more accurate descriptions
of the exchange–correlation energy are available [17]; however, variational derivatives will
lead to rather unwieldy equations forEa and the variational parameters contained inρe(r).
It remains for further investigation to refine the values ofEa and the expressions forρe(r)

used in the variational statistical approximation insofar as the associated dielectric screening
problem remains mathematically and numerically tractable.

2.2. Potential energy in the exponential bound-electron-density approximation

This subsection is concerned with the potential energyv(r) due to the atom or ion
charge distribution when the core electrons have the one-parameter exponential functional
form. The total donor-charge density, accompanyingv(r), provides the source term in the
corresponding Poisson equation,

∇2v(r) = 4πρa(r). (11a)

Because of spherical symmetry, (11a) becomes

v′′(r) + 2

r
v′(r) = 4πZδ(r) − Na

2α3
e−r/α (11b)

where the prime denotes differentiation with respect tor. The boundary conditions on
(11b) are such thatrv(r) = −Z andv(r) = 0 at r = 0 andr = ∞, respectively. From the
definition w(r) = rv(r), it is found that the general solution of the equation forw(r) is

w(r) = c1 + c2r − (
Na/2

)
e−r/α(2 + r/α) (12)

where the integration constantsc1 = −(Z−Na) andc2 = 0 are determined by the boundary
conditions. Finally,

vz,p(r) = −(Z/r)
{
1 − (1 − p)

[
1 − e−r/α(Z,p)

(
r/2α(Z, p) + 1

)]}
. (13)

It is readily shown by direct integration of (2c), for ρe(r) given by (5) and withvn(r)

given by (2b), that (2a) also leads to (13), as expected. In the case of complete ionization
(p = 1), (13) reduces to the bare ion potential

vZ,1(r) = −Z/r (14)

studied in [1]. If the core electrons are placed at the origin so thatρe(r) = Naδ(r), then

vz,p(r) = −Zp/r. (15)

Formally, (15) follows from (13) by allowing the screening length ofα(Z, p) to vanish.
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3. Thomas–Fermi-type dielectric screening of atoms or ions in semiconductors

3.1. Euler–Lagrange and Poisson equations

Consider the many-electron system that results when a statistical model atom or ion is
immersed in a semiconductor-like electron gas. It consists of mobile valence electrons in a
positive background plus the nucleus and fixed electrons of the impurity. A procedure for
developing a corresponding TF-type equation for the self-consistent screened potential of
the impurity has been outlined in a previous paper [18]. Minimization of the total ground-
state energy functionalE with respect to the screening charge densityn(r), subject to the
constraint that the total number of valence electrons

N =
∫

n(r)dτ (16)

is constant, yields a nonlinear Euler–Lagrange equation relating toV (r) and n(r). The
functional to be made stationary isE − [EF + V (R)]N whereEF is the Fermi energy,
[EF + V (R)] plays the role of the Lagrange multiplier, and

E = ck

∫
n5/3(r)dτ +

∫
n(r)Vn(r)dτ +

∫
n(r)Ve(r)dτ − ce

∫
n4/3(r)dτ. (17)

ce is an abbreviation for the constant(3/4)(3/π)1/3 appearing as a prefactor in the Dirac
exchange energy. The nuclear potential energy created by the donor nucleus and the
background positive charge is given by

Vn(r) = vn(r) −
∫

ndτ ′

|r − r′| . (18)

Similarly, the potential energy due to the bound and valence electrons is expressed as

Ve(r) = ve(r) + 1

2

∫
n(r ′)dτ ′

|r − r′| . (19)

The variational principle yields the Euler–Lagrange equation
5
3ckn

2/3(r) − 4
3cen

1/3(r) + V (r) − EF − V (R) = 0. (20)

This equation expresses the constancy of the electrochemical potential,EF (r) + V (r) =
EF + V (R), where the first two terms on the left-hand side of (20) are identified with
the local Fermi energyEF (r). As for the total electrostatic potentialV (r), it corresponds
to the sumVn(r) + 2Ve(r) − ve(r). Equation (20) also embodies the boundary condition
EF (R) = EF , or equivalentlyn(R) = n, that simulates semiconductor-like behaviour of
the valence electron gas.

Self-consistency requires thatV (r) satisfies Poisson’s equation

∇2V (r) = 4π [n − n(r)] + 4πρa(r) (21)

where the square brackets on the right-hand side of (21) enclose the screening charge density
and ρa(r) is the impurity atom or ion charge density appearing in (11a) and (11b). It is
clear from (11a) and (21) that the differenceV (r) − vZ,p(r) denotes the potential due to
the induced electron charge. Electrostatic considerations show that

V (r) = vz,p(r) −
∫

[n − n(r ′)] dτ ′

|r − r′| . (22)

Clearly, this statement coincides with the definition ofV (r) given above in the context
of the variational principle. Before proceeding to the TF and TFD theories of dielectric
screening of statistical models of donor impurities, it is emphasized that the basic equations
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for n(r) andV (r) presented here are the same as those used in previous works [6, 18] for
the point-charge-impurity case of (14). The significant new feature here is the dependence
of a nonpointlikevZ,p(r) on natural parameters identifying the donor atom or ion.

3.2. Linear and nonlinear Thomas–Fermi equations

When the exchange contribution in (20) is neglected, the resulting equation expressesn(r)

in terms ofV (r) as

n(r) = 23/2

3π2

[
EF + vz,p(R) +

(
1 − 1

ε

)
Zp

R
− V (r)

]3/2

r 6 R. (23)

This relationship showsV (R) as the sum of the bare ion potentialvz,p(R) and the potential
(1−1/ε)(Zp/R) due to the screening charge which is totally confined within the screening
radiusR. In the case when all of the external chargeZp also resides within the screening
boundary,V (R) reduces to−Zp/εR, as previously mentioned. At and beyondR, the
electron density takes on its uniform background value

n(r) = n = (
2EF

)3/2/
3π2 r > R (24)

where, in the TF approximation,EF = (1/2)k2
F . Equation (23) combines with (21) to form

a nonlinear differential equation forV (r) given by

∇2V (r) = (
27/2/3π

){
E

3/2
F − [

EF + V (R) − V (r)
]3/2

}
+ 4πρa(r)

r 6 R. (25)

Continuity of the potential in (25) with the external potential

V (r) = vZ,p(r) + (
1 − 1/ε

)
Zp/r r > R (26)

and its derivative (the electric field) with

V ′(r) = v′
z,p(r) − (1 − 1/ε)Zp/r2 r > R (27)

at r = R, and the behaviour at the origin generally attributed to a Coulomb divergence, i.e.,

lim(r → 0)rV (r) = −Z (28)

are the corresponding boundary conditions.
First, consider a binomial-expansion perturbation-series approach in which the square

of the quantity [V (R) − V (r)]/EF is negligible in comparison with unity. This procedure
leads to a linearized [19] form of (25), namely

∇2V (r) = q2
0[V (r) − V (R)] + 4πρa(r) (29)

where

q2
0 = 4kF /π. (30)

Because of spherical symmetry, the general solution of (29) is found to be

V (r) = V (R) + 1

r

(
c+ eq0r + c− e−q0r

) − Na

2α(1 − α2q2
0)

e−r/α

r

(
r + 2α

1 − α2q2
0

)
(31)

for 4πρa(r) given by the right-hand side of (11b). The constantsc± are fixed by continuity
of the potential atr = R and the divergence condition of the origin. Lastly, continuity of
the electric field atr = R is used to determineR. It follows for r 6 R that

V (r) = V (R) − Z
(
1 − P1

)sinhq0(R − r)

r sinhq0R

+Z
[(P0R + P1)e−R/α sinhq0r − (P0r + P1)e−r/α sinhq0R]

r sinhq0R
. (32)
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The quantitiesP0 andP1 are defined by

P0 = (1 − p)

2α(1 − α2q2
0)

P1 = (1 − p)

(1 − α2q2
0)2

. (33)

The condition for the determination ofR is given by

q0R
(
1 − P1

) + q0R
(
P0R + P1

)
e−R/α coshq0R − (p/ε) sinhq0R + {

(R/α)
(
P0R + P1

)
−P0R − (1 − p)/2

[
1 + (1 + R/α)2

]}
e−R/α sinhq0R = 0. (34)

Equations (32)–(34) summarize the solution, in closed analytical form, of the screening
equation in the linearized TF theory. Input parameters characterizing the semiconductor
and the dopant type arekF , ε and Z, p (or Na), respectively. The quantitiesq0 and
α appearing in these equations are given in terms of these parameters by (30) and (9),
respectively.

Numerical illustrations of linear and nonlinear TF results for various donors in silicon
are displayed in subsection 4.1. It remains here to examine (13), (26) and (32)–(34) in
certain limiting cases. By formally lettingα → 0, these equations reduce to their point-
charge (Zp) forms first reported in [1]. In that case, the solution of the TF equations for
linear dielectric screening is given by

V (r) = −Zp/εR − Zp sinhq0(R − r)

r sinhq0R
r 6 R (35)

V (r) = −Zp/εr r > R (36)

and

εq0R = sinhq0R. (37)

Metallic-like behaviour of the valence electron gas is recovered in the limitR → ∞ where
(32) becomes

V (r) = −Z
(
1 − P1

)
e−q0r/r − Z

(
P0r + P1

)
e−r/α/r. (38)

This expression, in turn, is connected to the well known Mott [20] potential for the TF
metallic screening of a point charge (Zp) by letting α → 0. In the short-range limit, the
interior (r 6 R) semiconductor potential and the metal potential approach the nuclear charge
−Z. For the long-range limit, the exterior(r > R) semiconductor potential approaches
−Zp/εr. When the valence screening effect is neglected(q0 = 0), the long-range limit of
(38) is −Zp/r.

3.3. Linear and nonlinear Thomas–Fermi–Dirac equations

It is seen that (20) is a quadratic in the cube root ofn(r) and because of the exchange term
it predicts a connection betweenn(r) andV (r) that differs from (23). Indeed,

n(r) = (
23/2/3π2

)[
γ +

√
(−γ )2 + EF + vZ,p(R) + (1 − 1/ε)Zp/R − V (r)

]3
r 6 R

(39)

whereγ is a definition for 1/π
√

2. In the rest of space, fromR to infinity, the electron
density is given by

n(r) = n = (
23/2/3π2

)[
γ +

√
γ 2 + Ef

]3

r > R (40)
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where, in the TFD approximation,EF = (1/2)k2
F − kF γ

√
2, only the positive square-root

solution of (20) is retained as this is the physical choice. Formally, the TF versions of (39)
and (40) are recovered when the exchange effect is neglected (γ → 0). The nonlinear TFD
screening equation follows from (21) and (39). Together they give

∇2V (r) = (
27/23π

){[
γ +

√
γ 2 + EF

]3
−

[
γ +

√
(−γ )2 + EF + V (R) − V (r)

]3}
+4πρa(r) r 6 R. (41)

For r > 0, the screened potential has the same form shown already in (26). The boundary
conditions associated with (41) are the same as those stated in the previous section for the
TF equation.

Linearization [19] of (41) entails a binomial expansion in which the square of
[V (R) − V (r)]/(γ 2 + EF ) is neglected in comparison with unity. The resulting equation
is a replica of the linearized TF equation, with the difference thatq0 appearing in (29) is
replaced byq where

q = q0

√
kF /

(
kF − γ

√
2
)
. (42)

Thus, the linearized TFD solution follows immediately from (32–(34) by simply usingq in
place ofq0 in these equations. Remarks made in the concluding paragraph of the previous
section concerning limiting cases are also valid in the present context. Linear and nonlinear
TFD results are displayed numerically in subsection 4.2.

4. Screened potentials for ions of silicon, phosphorus and sulphur

4.1. Linear and nonlinear TF screened potentials

It is straightforward to formulate a strategy for solving the TF equations numerically. In
the linearized theory, this involves only a routine for finding the zeros of the function given
by the left-hand side of (34), thus securing the screening radius and the screened potential
of (32). Another routine is needed to solve (25) and (41) numerically in conjunction with
associated boundary conditions. This paper works with a scheme which rewrites a nonlinear
second-order differential equation as two first-order equations. A third first-order differential
equation is added for the purpose of findingR and the nonlinear screened potential in terms
of an initial value problem. Such routines are readily found in many numerical software
references including the one used here [21].

In forming the electron-gas model semiconductor it is assumed, for reference, that one
host ion Si4+ is not included in the smearing out of the positive ion cores of the host crystal.
It remains fixed at the origin and is screened like an impurity ion by the valence-electron
gas. When an isocoric impurity ion enters the system, it is assumed to do so with one or
fewer valence electrons and substitute for the Si4+ ion. In this way, the same number of
valence electrons is maintained in the gas. Computations are reported here for Si4+, P5+

and S6+ in silicon (ε = 11.94, kF = 0.96). Since the electronic cores of P5+ and S6+ are
isoelectronic with the core of S4+, the former have largerp and smallerα values.

For each impurity ion, the bare potentialvZ,p(r) is calculated from (9) and (13). The
corresponding screened potential forr > R is given by (26). Forr 6 R, linear and nonlinear
screened potentials follow from the numerical procedures referenced above. Figure 1(a)–(c)
showsrV (r) againstr for Si4+, P5+ and S6+ and corresponding point charges +4, +5 and
+6 in silicon. Each of these figures contains six curves, the lower (upper) three of which are
associated with the statistical (point-charge,Zp) model of the impurity. The former (latter)
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converge atr = 0 to −Z (−Zp) in agreement with previous remarks. In these figures,
dashed curves refer to bare ion potentials(V (r) → vZ,p(r)); dotted (solid) curves give
the results of nonlinear (linear) TF screening. In the long-range limit, the dashed curves
converge to−Zp, while the dotted and solid curves approach−Zp/ε. All potentials are
negative, monotonically increasing functions ofr. The general trend seen in these figures
is that nonlinear screening is more effective than the linear-screening approximation. This
difference, first noted for a point charge [5], is here evident for statistical atomic models, and
also has been shown for other impurity pseudocharges and corresponding pseudopotentials
[11–13].

Table 4. Linear and nonlinear TF and TFD screening radii (au) for various ions and their point
charge limits in silicon. Linear results are in parentheses.

Ion TF TFD

+4 3.732 (4.275) 3.110 (3.495)
+5 3.658 (4.275) 3.057 (3.495)
+6 3.593 (4.275) 3.011 (3.495)
Si4+ 0.666 (1.554) 0.618 (1.252)
P5+ 0.606 (1.422) 0.564 (1.151)
S6+ 0.538 (1.274) 0.502 (1.038)

Table 4 reports linear and nonlinear screening radii in silicon for the silicon and donor
ions in table 3, including their point-charge limits. For comparison, both TF and TFD radii
are compiled here. Screened potentials for these various ions in the TFD approximation
are presented in subsection 4.2. A perusal of either TF or TFD results reveals some
interesting features. (i) Linear and nonlinear screening radii for statistical defects exhibit the
same property as noted for their point-charge limits, that is, the latter are correspondingly
smaller, especially so for large charge in the point-charge case. (ii) For point charges, linear
(nonlinear) radii are charge-independent (dependent). In the former case, this is clearly
shown by (37). (iii) For statistical defects, linear and nonlinear radii are functions of the
nuclear chargeZ and the degree of ionizationp. In the linear case this is evident from
(34). These radii and their corresponding differences decrease as the degree of ionization
decreases. (iv) TFD screening radii are smaller than their TF counterparts, indicating more
effective screening in the TFD approximation. A measure of the magnitudes of these various
screening radii may be visualized by comparing them with the nearest-neighbour distance,
4.44 au, in silicon.

4.2. Linear and nonlinear TFD screened potentials

The computational methods referred to in the previous section apply,in toto, for various
values ofZ and p, to the TFD screening equations. Withq0 replaced byq, the roots
of (34) give the linear radiiR. In turn, these are employed in (32), modified by the
replacement referenced here, to secure the linearized screened potentials forr 6 R. As in
the linearized TF approximation, (26) applies in the exterior regionr > R. Nonlinear TFD
screened potentials, forr 6 R, follow from the numerical solution of (41). Figure 2 shows
rV (r) againstr for the same set of ions and corresponding point charges in silicon, as
before. These figures are described in the same manner as in the previous section. To avoid
going through a repetitious discussion of the results, suffice it to say, again, that nonlinear
screening is more effective than linear screening.
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Figure 1. A comparison of linear (solid curves) and nonlinear (dotted curves) TF screened
potentials for statistical impurities and their point-charge limits in silicon as follows: (a) Si4+;
(b) P5+; (c) S6+. The dashed curves represent corresponding bare potentials of point charge
(P.C.) and ION.
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Figure 2. A comparison of linear (solid curves) and nonlinear (dotted curves) TFD screened
potentials for statistical impurities and their point-charge limits in silicon as follows: (a) Si4+;
(b) P5+; (c) S6+. Dashed curves represent corresponding bare potentials of point-charge (P.C.)
and ION.
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Figure 3. A comparison of linear (squares, TF; plusses, TFD) and nonlinear (triangles, TF;
crosses, TFD), screening radiiR against the degree of ionizationp for a statistical model of
phosphorus in silicon. (See also [22]).

To compare the two sets of solutions obtained from the TF and TFD theories, figure 3
shows the degree of ionizationp against the screening radiusR for phosphorus in silicon.
Fifteen values ofp, ranging from the neutral atom (p = 0, Na = 15) to the hydrogen-
like atom (p = 0.933, Na = 1), and correspondingR-values, for linear and nonlinear TF
and TFD solutions, are included in this illustration. The absence of screening (R = 0)
is consistent with a neutral atom (p = 0). This is verified, for example, in the linear
approximation by (34). For a given value ofp, the statistical atom or ion is effectively
screened, i.e., smaller radii are obtained in the following order of approximation: linear TF,
linear TFD, nonlinear TF, and nonlinear TFD [22]. The same trend is found for the point
ion except when its charge is less than +7, in which case linear TFD and nonlinear TF
are interchanged in this sequence. For a given TF-type approximation, it is noted that the
screening radii and the degree of ionization are related monotonically, the former reaching
its maximum value in the point-charge limit of full ionization. Finally, figure 4 shows a
sequence of nonlinear TFD potentials withp as parameter. The solid and short-dash–long-
dash curves correspond to the limiting cases of a neutral atom (p = 0, R = 0) and a fully
ionized atom (p = 1, R = 2.731), respectively. The other curves, in ascending order, are
associated with five values ofp (0.067, 0.20, 0.333, 0.467, and 0.60) and correspondingR

(0.165, 0.368, 0.564, 0.785, and 1.071).

5. Concluding remarks

This paper considered analytical and numerical TF-type solutions of the dielectric
screening problems that arise when a model impurity donor atom or ion is embedded
in a semiconductor-like valence electron gas with the use of the variational statistical
approximation of the bound impurity electrons. Theoretical results for ions of silicon
and isocoric donors in silicon have been derived, tabulated, and plotted in parallel with
corresponding point-charge limiting cases. It was found that the exponential charge
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Figure 4. A comparison of nonlinear TFD screened potentials, parametrized by the degree of
ionization p, for a statistical model of phosphorus in silicon. The solid curve and the short-
dash–long-dash curve represent the neutral atom and the fully ionized atom, respectively. The
other curves, in ascending order, are associated with increasing values ofp.

distribution describing the electronic ground state of the impurity yields good results for the
total internal energy of the free ions and neutral atoms. Given the donor (Z, p) and the
host semiconductor (kF , ε), the present formulation leads to linear and nonlinear screened
impurity potentials with no adjustment of parameters. It is noted, however, since (4) does
not involve a discrete summation, thatp may be treated formally as a continuous variable.
Figure 3 already reflects this possibility forp and, thus,R. Whereas the present work
is concerned with the screening of individual bare impurity potentials, consistent binding
energy calculations entail the screening of the difference between the bare impurity and host
potentials, as shown, for example, in [11] and [13] where various charge and pseudocharge
core distributions are used. The case of an interstitial donor is different in that only the
bare impurity potential is screened.

For economy of presentation, this paper has focused on the screening of three model
ions and their point-charge limits. It is clear that other host crystals and substitutional or
interstitial impurities are readily incorporated in the present framework. Parallel calculations
of the TF and TFD screening of other single donors and double donors have been carried
out with similar results. In the case of isocoric impurities, where the difference between the
bare potential or the donor and the host is small, the conventional effective-mass theory is a
convenient approach to the binding energy problem [1]. For nonisocoric donor impurities,
the difference between corresponding bare potentials shows considerable deviation from the
point-charge model. Generalized effective-mass theories have been developed to handle this
case and the special case of isocoric donors [1, 2, 13]. Another study is planned to report
on the results of applying these formulations of the binding energy problem when the bare
potentials of donor and host are based on charge-density distributions given by a variational
statistical approximation.

Literature on TF-type screening theory covers linear and nonlinear screening of pointlike
donors and acceptors in both elemental and compound semiconductors. The negative point-
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ion case is complicated by the possibility of a ‘Coulomb hole’, a physical region inside
which the valence electron density vanishes, leaving only the uniform background positive
charge. For example, consider substituting (15) withp < 0 into (23). It is seen, then,
that a sufficiently positiveV (r) will drive the term in square brackets negative. To remedy
this situation, such a term must be dropped and (25) replaced by an alternative form of
screening equation forV (r) > EF +V (R), where the equality holds at the Coulombic-hole
radiusr = R. Thus, there are three distinct regions and corresponding screened potentials
surrounding the negative pointlike ion [23]. The occurrence of a Coulomb-hole problem,
in the case of extended charge impurities, requires the same manner of treatment outlined
here.
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